Package: IntegratedMRF 1.1.9

IntegratedMRF: Integrated Prediction using Uni-Variate and Multivariate Random Forests

An implementation of a framework for drug sensitivity prediction from various genetic characterizations using ensemble approaches. Random Forests or Multivariate Random Forest predictive models can be generated from each genetic characterization that are then combined using a Least Square Regression approach. It also provides options for the use of different error estimation approaches of Leave-one-out, Bootstrap, N-fold cross validation and 0.632+Bootstrap along with generation of prediction confidence interval using Jackknife-after-Bootstrap approach.

Authors:Raziur Rahman, Ranadip Pal

IntegratedMRF_1.1.9.tar.gz
IntegratedMRF_1.1.9.zip(r-4.5)IntegratedMRF_1.1.9.zip(r-4.4)IntegratedMRF_1.1.9.zip(r-4.3)
IntegratedMRF_1.1.9.tgz(r-4.4-x86_64)IntegratedMRF_1.1.9.tgz(r-4.4-arm64)IntegratedMRF_1.1.9.tgz(r-4.3-x86_64)IntegratedMRF_1.1.9.tgz(r-4.3-arm64)
IntegratedMRF_1.1.9.tar.gz(r-4.5-noble)IntegratedMRF_1.1.9.tar.gz(r-4.4-noble)
IntegratedMRF_1.1.9.tgz(r-4.4-emscripten)IntegratedMRF_1.1.9.tgz(r-4.3-emscripten)
IntegratedMRF.pdf |IntegratedMRF.html
IntegratedMRF/json (API)

# Install 'IntegratedMRF' in R:
install.packages('IntegratedMRF', repos = c('https://razrahman.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:
  • Dream_Dataset - NCI-Dream Drug Sensitivity Prediction Challenge Dataset

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.26 score 18 scripts 196 downloads 1 mentions 14 exports 34 dependencies

Last updated 6 years agofrom:d049a5140e. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-win-x86_64OKNov 07 2024
R-4.5-linux-x86_64OKNov 07 2024
R-4.4-win-x86_64OKNov 07 2024
R-4.4-mac-x86_64OKNov 07 2024
R-4.4-mac-aarch64OKNov 07 2024
R-4.3-win-x86_64OKNov 07 2024
R-4.3-mac-x86_64OKNov 07 2024
R-4.3-mac-aarch64OKNov 07 2024

Exports:build_forest_predictbuild_single_treeCombinationCombPredictCombPredictSpecificCrossValidationerror_calculationImputationIntegratedPredictionNode_costpredictingsingle_tree_predictionsplit_nodesplitt

Dependencies:bootstrapclicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclelimSolvelpSolvemagrittrMASSMatrixmgcvMultivariateRandomForestmunsellnlmepillarpkgconfigquadprogR6RColorBrewerRcpprlangscalestibbleutf8vctrsviridisLitewithr