
Package: IntegratedMRF (via r-universe)
September 8, 2024

Type Package

Title Integrated Prediction using Uni-Variate and Multivariate Random
Forests

Version 1.1.9

Date 2018-07-05

Author Raziur Rahman, Ranadip Pal

Maintainer Raziur Rahman <razeeebuet@gmail.com>

Description An implementation of a framework for drug sensitivity
prediction from various genetic characterizations using
ensemble approaches. Random Forests or Multivariate Random
Forest predictive models can be generated from each genetic
characterization that are then combined using a Least Square
Regression approach. It also provides options for the use of
different error estimation approaches of Leave-one-out,
Bootstrap, N-fold cross validation and 0.632+Bootstrap along
with generation of prediction confidence interval using
Jackknife-after-Bootstrap approach.

License GPL-3

RoxygenNote 6.0.1

Depends R (>= 2.10)

Imports Rcpp (>= 0.12.4), bootstrap, ggplot2, utils, stats, limSolve,
MultivariateRandomForest

LinkingTo Rcpp

NeedsCompilation yes

Date/Publication 2018-07-05 20:30:03 UTC

Repository https://razrahman.r-universe.dev

RemoteUrl https://github.com/cran/IntegratedMRF

RemoteRef HEAD

RemoteSha d049a5140ee3d6f87e1c5daf809ae28cbf73ee8f

1

2 build_forest_predict

Contents
build_forest_predict . 2
build_single_tree . 4
Combination . 5
CombPredict . 8
CombPredictSpecific . 10
CrossValidation . 12
Dream_Dataset . 13
error_calculation . 14
Imputation . 15
IntegratedPrediction . 15
Node_cost . 17
predicting . 18
single_tree_prediction . 19
splitt . 19
split_node . 21

Index 22

build_forest_predict Prediction using Random Forest or Multivariate Random Forest

Description

Builds Model of Random Forest or Multivariate Random Forest (when the number of output features
> 1) using training samples and generates the prediction of testing samples using the inferred model.

Usage

build_forest_predict(trainX, trainY, n_tree, m_feature, min_leaf, testX)

Arguments

trainX Input Feature matrix of M x N, M is the number of training samples and N is the
number of input features

trainY Output Response matrix of M x T, M is the number of training samples and T is
the number of ouput features

n_tree Number of trees in the forest, which must be positive integer
m_feature Number of randomly selected features considered for a split in each regression

tree node, which must be positive integer and less than N (number of input
features)

min_leaf Minimum number of samples in the leaf node. If a node has less than or equal
to min_leaf samples, then there will be no splitting in that node and this node
will be considered as a leaf node. Valid input is positive integer, which is less
than or equal to M (number of training samples)

testX Testing samples of size Q x N, where Q is the number of testing samples and N
is the number of features (Same number of features as training samples)

build_forest_predict 3

Details

Random Forest regression refers to ensembles of regression trees where a set of n_tree un-pruned
regression trees are generated based on bootstrap sampling from the original training data. For each
node, the optimal feature for node splitting is selected from a random set of m_feature from the total
N features. The selection of the feature for node splitting from a random set of features decreases
the correlation between different trees and thus the average prediction of multiple regression trees is
expected to have lower variance than individual regression trees. Larger m_feature can improve the
predictive capability of individual trees but can also increase the correlation between trees and void
any gains from averaging multiple predictions. The bootstrap resampling of the data for training
each tree also increases the variation between the trees.

In a node with training predictor features (X) and output feature vectors (Y), node splitting is done
with the aim of selecting a feature from a random set of m_feature and threshold z to partition the
node into two child nodes, left node (with samples < z) and right node (with samples >=z). In
multivariate trees (MRF) node cost is measured as the sum of squares of the Mahalanobis distance
where as in univariate trees (RF) node cost is measured as the Euclidean distance.

After the Model of the forest is built using training Input features (trainX) and output feature matrix
(trainY), the Model is used to generate the prediction of output features (testY) for the testing
samples (testX).

Value

Prediction result of the Testing samples

References

[Random Forest] Breiman, Leo. "Random forests." Machine learning 45.1 (2001): 5-32.

[Multivariate Random Forest] Segal, Mark, and Yuanyuan Xiao. "Multivariate random forests."
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1.1 (2011): 80-87.

Examples

library(IntegratedMRF)
#Input and Output Feature Matrix of random data (created using runif)
trainX=matrix(runif(50*100),50,100)
trainY=matrix(runif(50*5),50,5)
n_tree=2
m_feature=5
min_leaf=5
testX=matrix(runif(10*100),10,100)
#Prediction size is 10 x 5, where 10 is the number
#of testing samples and 5 is the number of output features
Prediction=build_forest_predict(trainX, trainY, n_tree, m_feature, min_leaf, testX)

4 build_single_tree

build_single_tree Model of a single tree of Random Forest or Multivariate Random For-
est

Description

Build a Univariate Regression Tree (for generation of Random Forest (RF)) or Multivariate Re-
gression Tree (for generation of Multivariate Random Forest (MRF)) using the training samples,
which is used for the prediction of testing samples.

Usage

build_single_tree(X, Y, m_feature, min_leaf, Inv_Cov_Y, Command)

Arguments

X Input Feature matrix of M x N, M is the number of training samples and N is the
number of input features

Y Output Feature matrix of M x T, M is the number of training samples and T is
the number of ouput features

m_feature Number of randomly selected features considered for a split in each regression
tree node, which must be positive integer and less than N (number of input
features)

min_leaf Minimum number of samples in the leaf node, which must be positive integer
and less than or equal to M (number of training samples)

Inv_Cov_Y Inverse of Covariance matrix of Output Response matrix for MRF(Input [0 0;0
0] for RF)

Command 1 for univariate Regression Tree (corresponding to RF) and 2 for Multivariate
Regression Tree (corresponding to MRF)

Details

The regression tree structure is represented as a list of lists. For a non-leaf node, it contains the
splitting criteria (feature for split and threshold) and for a leaf node, it contains the output responses
for the samples contained in the leaf node.

Value

Model of a single regression tree (Univariate or Multivariate Regression Tree). An example of the
list of the non-leaf node:

Flag for determining node status; leaf node (1) or branch node (0)

1
Index of samples for the left node

int [1:34] 1 2 4 5 ...
Index of samples for the right node

int [1:16] 3 6 9 ...

Combination 5

Feature for split

int 34
Threshold values for split, average them

num [1:3] 0.655 0.526 0.785
List number for the left and right nodes

num [1:2] 2 3

An example of the list of the leaf node:

Output responses

num[1:4,1:5] 0.0724 0.1809 0.0699 ...

Combination Weights for combination of predictions from different data subtypes
using Least Square Regression based on various error estimation tech-
niques

Description

Calculates combination weights for different subtypes of dataset combinations to generate inte-
grated Random Forest (RF) or Multivariate Random Forest (MRF) model based on different error
estimation models such as Bootstrap, 0.632+ Bootstrap, N-fold cross validation or Leave one out.

Usage

Combination(finalX, finalY_train, Cell, finalY_train_cell, n_tree, m_feature,
min_leaf, Confidence_Level)

Arguments

finalX List of Matrices where each matrix represent a specific data subtype (such as ge-
nomic characterizations for drug sensitivity prediction). Each subtype can have
different types of features. For example, if there are three subtypes containing
100, 200 and 250 features respectively, finalX will be a list containing 3 matrices
of sizes M x 100, M x 200 and M x 250 where M is the number of Samples.

finalY_train A M x T matrix of output features for training samples, where M is number
of samples and T is the number of output features. The dataset is assumed
to contain no missing values. If there are missing values, an imputation method
should be applied before using the function. A function ’Imputation’ is included
within the package.

Cell It contains a list of samples (the samples can be represented either numerically
by indices or by names) for each data subtype. For the example of 3 data sub-
types, it will be a list containing 3 arrays where each array contains the sample
information for each data subtype.

finalY_train_cell

Sample names of output features for training samples

n_tree Number of trees in the forest, which must be positive integer

6 Combination

m_feature Number of randomly selected features considered for a split in each regression
tree node, Valid Input is a positive integer, which is less than N (which is equal
to number of input features for the smallest genomic characterization)

min_leaf Minimum number of samples in the leaf node, which must be positive integer
and less than or equal to M (number of training samples)

Confidence_Level

Confidence level for calculation of confidence interval (User Defined), which
must be between 0 and 100

Details

The function takes all the subtypes of dataset in matrix format and its corresponding sample infor-
mation. For calculation purpose, we have considered the data of the samples that are common in
all the subtypes and output training responses. For example, consider a dataset of 3 sub-types with
different number of samples and features, with indices of samples in subtype 1, 2, 3 and output fea-
ture matrix is 1:10, 3:15, 5:16 and 5:11 respectively. Thus, features of sample index 5:10 (common
to all subtypes and output feature matrix) of all subtypes and output feature matrix will be selected
and considered for all calculations.

For M x N dataset, N number of bootstrap sampling sets are considered. For each bootstrap sam-
pling set and each subtype, a Random Forest (RF) or, Multivariate Random Forest (MRF) model
is generated, which is used for calculating the prediction performance for out-of-bag samples. The
prediction performance for each subtype of the dataset is based on the averaging over different
bootstrap training sets. The combination weights (regression coefficients) for each combination of
subtypes are generated using least Square Regression from the individual subtype predictions and
used later to calculate mean absolute error, mean square error and correlation coefficient between
predicted and actual values.

For N-fold cross validation error estimation with M cell lines, N models are generated for each
subtype of dataset, where for each partition (M/N)*(N-1) cell lines are used for training and the
remaining cell lines are used to estimate errors and combination weights for different data subtype
combinations.

In 0.632 Bootstrap error estimation, bootstrap and re-substitution error estimates are combined
based on 0.632xBootstrap Error + 0.368xRe-substitution Error. While 0.632+ Bootstrap error es-
timation considers the overfitting of re-substitution error with no information error rate γ. An
estimate of γ is obtained by permuting the responses y[i] and predictors x[j].

γ = sum(sum(error(x[j], y[i]), j = 1,m), i = 1,m)/m2

The relative overfitting rate is defined as R = (BootstrapError − ResubstitutionError)/(γ −
ResubstitutionError) and weight distribution between bootstrap error and Re-substitution Error
is defined as w = 0.632/(1 − 0.368 ∗ R). So, 0.632+ Bootstrap error is equal to (1 − w) ∗
BootstrapError+w ∗ResubstitutionError. These prediction results are then used to compute
the errors and combination weights for different data subtype combinations.

Confidence Interval has been calculated using Jackkniffe-After-Bootstrap Approach and prediction
result of bootstrap error estimation.

For leave-one-out error estimation using M cell lines, M models are generated for each subtype
of dataset, which are then used to calculate the errors and combination weights for different data
subtype combinations.

Combination 7

Value

List with the following components:

BSP_coeff Combination weights using Bootstrap Error Estimation Model, where index is
in list format. If the number of genomic characterizations or subtypes of dataset
is 5, there will be 2^5-1=31 list of weights

Nfold_coeff Combination weights using N fold cross validation Error Estimation Model,
where index is in list format. If the number of genomic characterizations or
subtypes of dataset is 5, there will be 2^5-1=31 list of weights

BSP632plus_coeff

Combination weights using 0.632+ Bootstrap Error Estimation Model, where
index is in list format. If the number of genomic characterizations or subtypes
of dataset is 5, there will be 2^5-1=31 list of weights

LOO_coeff Combination weights using Leave-One-Out Error Estimation Model, where in-
dex is in list format. If the number of genomic characterizations or subtypes of
dataset is 5, there will be 2^5-1=31 list of weights

Error Matrix of Mean Absolute Error, Mean Square Error and correlation between
actual and predicted responses for integrated model based on Bootstrap, N fold
cross validation, 0.632+ Bootstrap and Leave-one-out error estimation sampling
techniques for the integrated model containing all the data subtypes

Confidence Interval

Low and High confidence interval for a user defined confidence level for the
drug using Jackknife-After-Bootstrap Approach in a list

BSP_error_all_mae

Bootstrap Mean Absolute Errors (MAE) for all combinations of the dataset sub-
types. Size C x R, where C is the number of combinations and R is the number
of output responses. C is in decreasing order, which means first value is com-
bination of all subtypes and next ones are in decreasing order. For example, if
a dataset has 3 subtypes, then C is equal to 2^3-1=7. The ordering of C is the
combination of subtypes [1 2 3], [1 2], [1 3], [2 3], [1], [2], [3]

Nfold_error_all_mae

N fold cross validation Mean Absolute Errors (MAE) for all combinations of
the dataset subtypes. Size C x R, where C is the number of combinations and R
is the number of output responses. C is in decreasing order, which means first
value is combination of all subtypes and next ones are in decreasing order. For
example, if a dataset has 3 subtypes, then C is equal to 2^3-1=7. The ordering
of C is the combination of subtypes [1 2 3], [1 2], [1 3], [2 3], [1], [2], [3]

BSP632plus_error_all_mae

0.632+ Bootstrap Mean Absolute Errors (MAE) for all combinations of the
dataset subtypes. Size C x R, where C is the number of combinations and R
is the number of output responses. C is in decreasing order, which means first
value is combination of all subtypes and next ones are in decreasing order. For
example, if a dataset has 3 subtypes, then C is equal to 2^3-1=7. The ordering
of C is the combination of subtypes [1 2 3], [1 2], [1 3], [2 3], [1], [2], [3]

LOO_error_all_mae

Leave One Out Mean Absolute Errors (MAE) for all combinations of the dataset
subtypes. Size C x R, where C is the number of combinations and R is the

8 CombPredict

number of output responses. C is in decreasing order, which means first value is
combination of all subtypes and next ones are in decreasing order. For example,
if a dataset has 3 subtypes, then C is equal to 2^3-1=7. The ordering of C is the
combination of subtypes [1 2 3], [1 2], [1 3], [2 3], [1], [2], [3]

The function also returns figures of different error estimations in .tiff format

References

Wan, Qian, and Ranadip Pal. "An ensemble based top performing approach for NCI-DREAM drug
sensitivity prediction challenge." PloS one 9.6 (2014): e101183.

Rahman, Raziur, John Otridge, and Ranadip Pal. "IntegratedMRF: random forest-based framework
for integrating prediction from different data types." Bioinformatics (Oxford, England) (2017).

Efron, Bradley, and Robert Tibshirani. "Improvements on cross-validation: the 632+ bootstrap
method." Journal of the American Statistical Association 92.438 (1997): 548-560.

Examples

library(IntegratedMRF)
data(Dream_Dataset)
Tree=1
Feature=1
Leaf=5
Confidence=80
finalX=Dream_Dataset[[1]]
Cell=Dream_Dataset[[2]]
Y_train_Dream=Dream_Dataset[[3]]
Y_train_cell=Dream_Dataset[[4]]
Y_test=Dream_Dataset[[5]]
Y_test_cell=Dream_Dataset[[6]]
Drug=c(1,2,3)
Y_train_Drug=matrix(Y_train_Dream[,Drug],ncol=length(Drug))
Result=Combination(finalX,Y_train_Drug,Cell,Y_train_cell,Tree,Feature,Leaf,Confidence)

CombPredict Integrated Prediction of Testing samples using Combination Weights
from integrated RF or MRF model

Description

Generates Random Forest or Multivariate Random Forest model for each subtype of dataset and
predicts testing samples using the generated models. Subsequently, the prediction for different
subtypes of dataset are combined using the Combination weights generated from ’Combination’
function.

Usage

CombPredict(finalX, finalY_train, Cell, finalY_train_cell, finalY_test_cell,
n_tree, m_feature, min_leaf, Coeff)

CombPredict 9

Arguments

finalX List of Matrices where each matrix represents a specific data subtype (such as
genomic characterizations for drug sensitivity prediction). Each subtype can
have different types of features. For example, if there are three subtypes con-
taining 100, 200 and 250 features respectively, finalX will be a list containing
3 matrices of sizes M x 100, M x 200 and M x 250 where M is the number of
Samples.

finalY_train A M x T matrix of output features for training samples, where M is number
of samples and T is the number of output features. The dataset is assumed
to contain no missing values. If there are missing values, an imputation method
should be applied before using the function. A function ’Imputation’ is included
within the package.

Cell It contains a list of samples (the samples can be represented either numerically
by indices or by names) for each data subtype. For the example of 3 data sub-
types, it will be a list containing 3 arrays where each array contains the sample
information for each data subtype.

finalY_train_cell

Cell lines of output features for training samples
finalY_test_cell

Cell lines of output features for testing samples

n_tree number of trees in the forest, which must be positive integer

m_feature Number of randomly selected features considered for a split in each regression
tree node, which must be positive integer

min_leaf minimum number of samples in the leaf node, which must be positive integer
and less than or equal to M (number of training samples)

Coeff Combination Weights. The user can supply the weights based on either Boot-
strap, Re-substitution, 0.632Bootstrap or Leave-one-out error estimation ap-
proaches.

Details

Input matrix and output response of training samples have been used to build Random Forest or
Multivariate Random Forest model for each subtype of a dataset. These models are used to calcu-
late prediction of testing samples for each subtype separately. Subsequently Combination Weights
(different errors have different combination weights and the user should select the one to be used)
are used to integrate the predictions from data subtypes. Note that the combination weights are
linear regression coefficients generated using the training samples.

The specific set of combination weights to be used for testing samples will depend on the number
of data subtypes available for the testing samples. Note that not all subtype information maybe
available for all samples. As an example with three data subtypes, a testing sample with all subtype
data available will use the combination weights corresponding to Serial [1 2 3] where if subtype 3
is not available, the function will using the combination weights corresponding to Serial [1 2].

Value

Final Prediction of testing samples based on provided testing sample names.

10 CombPredictSpecific

Examples

library(IntegratedMRF)
data(Dream_Dataset)
Tree=1
Feature=1
Leaf=10
Confidence=80
finalX=Dream_Dataset[[1]]
Cell=Dream_Dataset[[2]]
Y_train_Dream=Dream_Dataset[[3]]
Y_train_cell=Dream_Dataset[[4]]
Y_test=Dream_Dataset[[5]]
Y_test_cell=Dream_Dataset[[6]]
Drug=1
Y_train_Drug=matrix(Y_train_Dream[,Drug],ncol=length(Drug))
Result=Combination(finalX,Y_train_Drug,Cell,Y_train_cell,Tree,Feature,Leaf,Confidence)

CombPredict(finalX,Y_train_Drug,Cell,Y_train_cell,Y_test_cell,Tree,Feature,Leaf,Result[[1]])

CombPredictSpecific Prediction for testing samples using specific combination weights from
integrated RF or MRF model

Description

Generates Random Forest (One Output Feature) or Multivariate Random Forest (More than One
Output Feature) model for each subtype of dataset and predicts testing samples using these models.
The predictions are combined using the specific combination weights provided by the user. For the
input combination weights, the testing cell lines should have the subtype data corresponding to the
non-zero weight subtypes.

Usage

CombPredictSpecific(finalX, finalY_train, Cell, finalY_train_cell,
finalY_test_cell, n_tree, m_feature, min_leaf, Coeff)

Arguments

finalX List of Matrices where each matrix represent a specific data subtype (such as ge-
nomic characterizations for drug sensitivity prediction). Each subtype can have
different types of features. For example, if there are three subtypes containing
100, 200 and 250 features respectively, finalX will be a list containing 3 matrices
of sizes M x 100, M x 200 and M x 250 where M is the number of Samples.

finalY_train A M x T matrix of output features for training samples, where M is the number
of samples and T is the number of output features. The dataset is assumed
to contain no missing values. If there are missing values, an imputation method
should be applied before using the function. A function ’Imputation’ is included
within the package.

CombPredictSpecific 11

Cell It contains a list of samples (the samples can be represented either numerically
by indices or by names) for each data subtype. For the example of 3 data sub-
types, it will be a list containing 3 arrays where each array contains the sample
information for each data subtype.

finalY_train_cell

Sample names of output features for training samples
finalY_test_cell

Sample names of output features for testing samples (All these testing samples
must have features for each subtypes of dataset)

n_tree Number of trees in the forest, which must be positive integer

m_feature Number of randomly selected features considered for a split in each regression
tree node, which must be a positive integer

min_leaf Minimum number of samples in the leaf node, which must be a positive integer
less than or equal to M (number of training samples)

Coeff Combination Weights (user defined or some combination weights generated us-
ing the ’Combination’ function). The size must be C, which is equal to the
number of subtypes of dataset given in finalX.

Details

Input feature matrix and output feature matrix have been used to generate Random Forest (One
Output Feature) or Multivariate Random Forest (More than One Output Feature) model for each
subtype of dataset separately. The prediction of testing samples using each subtype trained model
is generated. The predictions are combined using the specific combination weights provided by
the user. For the input combination weights, the testing cell lines should have the subtype data
corresponding to the non-zero weight subtypes. For instance, if combination weights is [0.6 0.3 0
0.1], then the subtype 1, 2 and 4 needs to be present for the testing samples. Furthermore, all the
features should be present for the required subtypes for the testing samples.

Value

Final Prediction of testing samples based on provided testing sample names

Examples

library(IntegratedMRF)
data(Dream_Dataset)
Tree=1
Feature=1
Leaf=10
Confidence=80
finalX=Dream_Dataset[[1]]
Cell=Dream_Dataset[[2]]
Y_train_Dream=Dream_Dataset[[3]]
Y_train_cell=Dream_Dataset[[4]]
Y_test=Dream_Dataset[[5]]
Y_test_cell=Dream_Dataset[[6]]
Drug=1
Y_train_Drug=matrix(Y_train_Dream[,Drug],ncol=length(Drug))

12 CrossValidation

Result=Combination(finalX,Y_train_Drug,Cell,Y_train_cell,Tree,Feature,Leaf,Confidence)

CombPredictSpecific(finalX,Y_train_Drug,Cell,Y_train_cell,Y_test_cell,Tree,
Feature,Leaf,runif(length(Cell)*1))

CrossValidation Generate training and testing samples for cross validation

Description

Generates Cross Validation Input Matrices and Output Vectors for training and testing, where num-
ber of folds in cross validation is user defined.

Usage

CrossValidation(X, Y, F)

Arguments

X M x N Input matrix, M is the number of samples and N is the number of features

Y output response as column vector

F Number of Folds

Value

List with the following components:

TrainingData List of matrices where each matrix contains a fold of Cross Validation Training
Data, where the number of matrices is equal to F

TestingData List of matrices where each matrix contains a fold of Cross Validation Testing
Data, where the number of matrices is equal to F

OutputTrain List of matrices where each matrix contains a fold of Cross Validation Training
Output Feature Data, where the number of matrices is equal to F

OutputTest List of matrices where each matrix contains a fold of Cross Validation Testing
Output Feature Data, where the number of matrices is equal to F

FoldedIndex Index of Different Folds. (e.g., for Sample Index 1:6 and 3 fold, FoldedIndex
are [1 2 3 4], [1 2 5 6], [3 4 5 6])

Dream_Dataset 13

Dream_Dataset NCI-Dream Drug Sensitivity Prediction Challenge Dataset

Description

A demo dataset of different genomic characterizations and drug sensitivity selected from NCI-
Dream Drug Sensitivity Prediction Challenge dataset.

Usage

Dream_Dataset

Format

A list of 6 variables containing genomic characterizations and drug sensitivity:

finalX_Dream List of 5 Matrices where the matrices represent different genomic characterizations
of Gene Expression, Methylation, RNA sequencing, Reverse Phase Protein Array (RPPA) and
Copy Number Variation (CNV). 1000 predictor features for each subtype is included to satisfy
package size limitations.

Cell_line_Index_Dream List of Cell Line names for each genomic charcterization

finalY_train_Dream Drug Sensitivity of training samples (35) for 31 drugs provided for NCI-
Dream Drug Sensitivity Prediction Challenge

finalY_train_cell_Dream Cell line names of the training samples

finalY_test_Dream Drug Sensitivity of testing samples (18) for 31 drugs provided for NCI-Dream
Drug Sensitivity Prediction Challenge Dataset

finalY_test_cell_Dream Cell line names of the testing samples

Source

https://www.synapse.org/#!Synapse:syn2785778/wiki/70252

References

Costello, James C., et al. "A community effort to assess and improve drug sensitivity prediction
algorithms." Nature biotechnology 32.12 (2014): 1202-1212.

https://www.synapse.org/#!Synapse:syn2785778/wiki/70252

14 error_calculation

error_calculation Error calculation for integrated model

Description

Combines Prediction from different data subtypes through Least Square Regression and computes
Mean Absolute Error, Mean Square Error and Pearson Correlation Coefficient between Integrated
Prediction and Original Output feature.

Usage

error_calculation(final_pred, final_actual)

Arguments

final_pred A n x p matrix of predicted features, where n is the number of samples and p is
the number of data subtypes with prediction

final_actual A n x 1 vector of original output responses

Details

If final_pred is a vector, it refers to the prediction result for one subtype of dataset and this function
will return Mean Absolute Error, Mean Square Error and Pearson Correlation Coefficient between
predicted and Original Output response. If final_pred is a matrix containing prediction results for
more than one subtype of dataset, Least Square Regression will be used to calculate the weights
for combining the predictions and generate an integrated prediction of size n x 1. Subsequently,
Mean Absolute Error, Mean Square Error and Pearson Correlation Coefficient between Integrated
Prediction and Original Output responses are calculated.

Value

List with the following components:

Integrated Prediction

Integrated Prediction based on combining predictions from data subtypes using
Least Square Regression

error_mae Mean Absolute Error between Integrated Prediction and Original Output Re-
sponses

error_mse Mean Square Error between Integrated Prediction and Original Output Responses

error_corr Pearson Correlation Coefficient between Integrated Prediction and Original Out-
put Responses

See Also

lsei

Imputation 15

Imputation Imputation of a numerical vector

Description

Imputes the values of the vector that are NaN

Usage

Imputation(XX)

Arguments

XX a vector of size N x 1

Details

If a value is missing, it will be replaced by an imputed value that is an average of previous and next
value. If previous or next value is also missing, the closest value is used as the imputed value.

Value

Imputed vector of size N x 1

IntegratedPrediction Integrated Prediction of Testing samples from integrated RF or MRF
model

Description

Generates Random Forest or Multivariate Random Forest model for each subtype of dataset and
predicts testing samples using the generated models. Subsequently, the prediction for different
subtypes of dataset are combined using the Combination weights generated from Integrated Model
which is based on Bootstrap error estimate

Usage

IntegratedPrediction(finalX, finalY_train, Cell, finalY_train_cell,
finalY_test_cell, n_tree, m_feature, min_leaf)

16 IntegratedPrediction

Arguments

finalX List of Matrices where each matrix represent a specific data subtype (such as ge-
nomic characterizations for drug sensitivity prediction). Each subtype can have
different types of features. For example, if there are three subtypes containing
100, 200 and 250 features respectively, finalX will be a list containing 3 matrices
of sizes M x 100, M x 200 and M x 250 where M is the number of Samples.

finalY_train A M x T matrix of output features for training samples, where M is number
of samples and T is the number of output features. The dataset is assumed
to contain no missing values. If there are missing values, an imputation method
should be applied before using the function. A function ’Imputation’ is included
within the package.

Cell It contains a list of samples (the samples can be represented either numerically
by indices or by names) for each data subtype. For the example of 3 data sub-
types, it will be a list containing 3 arrays where each array contains the sample
information for each data subtype.

finalY_train_cell

Cell lines of output features for training samples
finalY_test_cell

Cell lines of output features for testing samples
n_tree number of trees in the forest, which must be positive integer
m_feature Number of randomly selected features considered for a split in each regression

tree node, which must be positive integer
min_leaf minimum number of samples in the leaf node, which must be positive integer

and less than or equal to M (number of training samples)

Details

Input matrix and output response of training samples have been used to build Random Forest or
Multivariate Random Forest model for each subtype of a dataset. These models are used to calculate
prediction of testing samples for each subtype separately. Subsequently Combination Weights are
used to integrate the predictions from data subtypes.

Combination Weight Generation: For M x N dataset, N number of bootstrap sampling sets are con-
sidered. For each bootstrap sampling set and each subtype, a Random Forest (RF) or, Multivariate
Random Forest (MRF) model is generated, which is used for calculating the prediction performance
for out-of-bag samples. The prediction performance for each dataset subtypes is based on the av-
eraging over different bootstrap training sets. The combination weights (regression coefficients)
for each combination of subtypes are generated using least Square Regression from the individual
subtype predictions and used to integrate the predictions from data subtypes.

The specific set of combination weights to be used for testing samples will depend on the number
of data subtypes available for the testing samples. Note that not all subtype information maybe
available for all samples. As an example with three data subtypes, a testing sample with all subtype
data available will use the combination weights corresponding to Serial [1 2 3] where as if subtype
3 is not available, the function will use the combination weights corresponding to Serial [1 2].

Value

Final Prediction of testing samples based on provided testing sample names.

Node_cost 17

Examples

library(IntegratedMRF)
data(Dream_Dataset)
Tree=1
Feature=1
Leaf=10
finalX=Dream_Dataset[[1]]
Cell=Dream_Dataset[[2]]
Y_train_Dream=Dream_Dataset[[3]]
Y_train_cell=Dream_Dataset[[4]]
Y_test=Dream_Dataset[[5]]
Y_test_cell=Dream_Dataset[[6]]
Drug=c(1,2,3)
Y_train_Drug=matrix(Y_train_Dream[,Drug],ncol=length(Drug))
IntegratedPrediction(finalX,Y_train_Drug,Cell,Y_train_cell,Y_test_cell,Tree,Feature,Leaf)

Node_cost Information Gain

Description

Compute the cost function of a tree node

Usage

Node_cost(y, Inv_Cov_Y, Command)

Arguments

y Output Features for the samples of the node

Inv_Cov_Y Inverse of Covariance matrix of Output Response matrix for MRF(Input [0 0;0
0] for RF)

Command 1 for univariate Regression Tree (corresponding to RF) and 2 for Multivariate
Regression Tree (corresponding to MRF)

Details

In multivariate trees (MRF) node cost is measured as the sum of squares of the Mahalanobis distance
to capture the correlations in the data whereas in univariate trees node cost is measured as the sum
of Euclidean distance square. Mahalanobis Distance captures the distance of the sample point from
the mean of the node along the principal component axes.

Value

cost or entropy of samples in a node of a tree

18 predicting

References

Segal, Mark, and Yuanyuan Xiao. "Multivariate random forests." Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 1.1 (2011): 80-87.

Examples

library(IntegratedMRF)
y=matrix(runif(10*2),10,2)
Inv_Cov_Y=solve(cov(y))
Command=2
#Command=2 for MRF and 1 for RF
#This function calculates information gain of a node
Cost=Node_cost(y,Inv_Cov_Y,Command)

predicting Prediction of testing sample in a node

Description

Provides the value of a testing sample in a node that refers to which child node it will go to using
the splitting criteria of the tree node or the prediction results if the node is a leaf.

Usage

predicting(Single_Model, i, X_test, Variable_number)

Arguments

Single_Model Model of a particular tree

i Number of splits. Used as an index, which indicates where in the list the splitting
criteria of this split has been stored.

X_test Testing samples of size 1 x N, 1 is the number of testing samples and N is the
number of features (same order and size used as training)

Variable_number

Number of Output Features

Details

The function considers the output at a particular node. If the node is a leaf, the average of output
responses is returned as prediction result. For a non-leaf node, the direction of left or right node is
decided based on the node threshold and splitting feature value.

Value

Prediction result of a testing samples in a node

single_tree_prediction 19

single_tree_prediction

Prediction of Testing Samples for single tree

Description

Predicts the output responses of testing samples based on the input regression tree

Usage

single_tree_prediction(Single_Model, X_test, Variable_number)

Arguments

Single_Model Random Forest or Multivariate Random Forest Model of a particular tree

X_test Testing samples of size Q x N, Q is the number of testing samples and N is the
number of features (same order and size used as training)

Variable_number

Number of Output Features

Details

A regression tree model contains splitting criteria for all the splits in the tree and output responses
of training samples in the leaf nodes. A testing sample using these criteria will reach a leaf node
and the average of the Output response vectors in the leaf node is considered as the prediction of
the testing sample.

Value

Prediction result of the Testing samples for a particular tree

splitt Split of the Parent node

Description

Split of the training samples of the parent node into the child nodes based on the feature and thresh-
old that produces the minimum cost

Usage

splitt(X, Y, m_feature, Index, Inv_Cov_Y, Command, ff)

20 splitt

Arguments

X Input Training matrix of size M x N, M is the number of training samples and N
is the number of features

Y Output Training response of size M x T, M is the number of samples and T is
the number of output responses

m_feature Number of randomly selected features considered for a split in each regression
tree node.

Index Index of training samples

Inv_Cov_Y Inverse of Covariance matrix of Output Response matrix for MRF (Input [0 0; 0
0] for RF)

Command 1 for univariate Regression Tree (corresponding to RF) and 2 for Multivariate
Regression Tree (corresponding to MRF)

ff Vector of m_feature from all features of X. This varies with each split

Details

At each node of a regression a tree, a fixed number of features (m_feature) are selected randomly
to be considered for generating the split. Node cost for all selected features along with possible n-1
thresholds for n samples are considered to select the feature and threshold with minimum cost.

Value

List with the following components:

index_left Index of the samples that are in the left node after splitting

index_right Index of the samples that are in the right node after splitting

which_feature The number of the feature that produces the minimum splitting cost

threshold_feature

The threshold value for the node split. A feature value less than or equal to the
threshold will go to the left node and it will go to the right node otherwise.

Examples

library(IntegratedMRF)
X=matrix(runif(20*100),20,100)
Y=matrix(runif(20*3),20,3)
m_feature=5
Index=1:20
Inv_Cov_Y=solve(cov(Y))
ff2 = ncol(X) # number of features
ff =sort(sample(ff2, m_feature))
Command=2#MRF, as number of output feature is greater than 1
Split_criteria=splitt(X,Y,m_feature,Index,Inv_Cov_Y,Command,ff)

split_node 21

split_node Splitting Criteria of all the nodes of the tree

Description

Stores the Splitting criteria of all the nodes of a tree in a list

Usage

split_node(X, Y, m_feature, Index, i, model, min_leaf, Inv_Cov_Y, Command)

Arguments

X Input Training matrix of size M x N, M is the number of training samples and N
is the number of features

Y Output Training response of size M x T, M is the number of samples and T is
the number of output responses

m_feature Number of randomly selected features considered for a split in each regression
tree node

Index Index of training samples

i Number of split. Used as an index, which indicates where in the list the splitting
criteria of this split will be stored.

model A list of lists with the spliting criteria of all the node splits. In each iteration, a
new list is included with the spliting criteria of the new split of a node.

min_leaf Minimum number of samples in the leaf node. If a node has less than or, equal
to min_leaf samples, then there will be no splitting in that node and the node is
a leaf node. Valid input is a positive integer and less than or equal to M (number
of training samples)

Inv_Cov_Y Inverse of Covariance matrix of Output Response matrix for MRF (Input [0 0; 0
0] for RF)

Command 1 for univariate Regression Tree (corresponding to RF) and 2 for Multivariate
Regression Tree (corresponding to MRF)

Details

This function calculates the splitting criteria of a node and stores the information in a list format.
If the node is a parent node, then indices of left and right nodes and feature number and threshold
value of the feature for the split are stored. If the node is a leaf, the output feature matrix of the
samples for the node are stored as a list.

Value

model: A list of lists with the splitting criteria of all the split of the nodes. In each iteration, the
Model is updated with a new list that includes the splitting criteria of the new split of a node.

Index

∗ datasets
Dream_Dataset, 13

build_forest_predict, 2
build_single_tree, 4

Combination, 5
CombPredict, 8
CombPredictSpecific, 10
CrossValidation, 12

Dream_Dataset, 13

error_calculation, 14

Imputation, 15
IntegratedPrediction, 15

Node_cost, 17

predicting, 18

single_tree_prediction, 19
split_node, 21
splitt, 19

22

	build_forest_predict
	build_single_tree
	Combination
	CombPredict
	CombPredictSpecific
	CrossValidation
	Dream_Dataset
	error_calculation
	Imputation
	IntegratedPrediction
	Node_cost
	predicting
	single_tree_prediction
	splitt
	split_node
	Index

