
Package: MultivariateRandomForest (via
r-universe)

August 25, 2024

Type Package

Title Models Multivariate Cases Using Random Forests

Version 1.1.5

Date 2017-04-05

Author Raziur Rahman

Maintainer Raziur Rahman <razeeebuet@gmail.com>

Description Models and predicts multiple output features in single
random forest considering the linear relation among the output
features, see details in Rahman et al
(2017)<doi:10.1093/bioinformatics/btw765>.

License GPL (>= 2)

RoxygenNote 6.0.1

Depends R (>= 2.10)

Imports Rcpp, bootstrap, stats

LinkingTo Rcpp

NeedsCompilation yes

Date/Publication 2017-05-01 10:20:31 UTC

Repository https://razrahman.r-universe.dev

RemoteUrl https://github.com/cran/MultivariateRandomForest

RemoteRef HEAD

RemoteSha d0ba3dc651065f367d3ab487c6be2d640a731f0a

Contents
build_forest_predict . 2
build_single_tree . 3
CrossValidation . 5
Imputation . 5

1

https://doi.org/10.1093/bioinformatics/btw765

2 build_forest_predict

Node_cost . 6
predicting . 7
single_tree_prediction . 8
splitt2 . 8
split_node . 10
variable_importance_measure . 11

Index 13

build_forest_predict Prediction using Random Forest or Multivariate Random Forest

Description

Builds Model of Random Forest or Multivariate Random Forest (when the number of output features
> 1) using training samples and generates the prediction of testing samples using the inferred model.

Usage

build_forest_predict(trainX, trainY, n_tree, m_feature, min_leaf, testX)

Arguments

trainX Input Feature matrix of M x N, M is the number of training samples and N is the
number of input features

trainY Output Response matrix of M x T, M is the number of training samples and T is
the number of ouput features

n_tree Number of trees in the forest, which must be positive integer

m_feature Number of randomly selected features considered for a split in each regression
tree node, which must be positive integer and less than N (number of input
features)

min_leaf Minimum number of samples in the leaf node. If a node has less than or equal
to min_leaf samples, then there will be no splitting in that node and this node
will be considered as a leaf node. Valid input is positive integer, which is less
than or equal to M (number of training samples)

testX Testing samples of size Q x N, where Q is the number of testing samples and N
is the number of features (Same number of features as training samples)

Details

Random Forest regression refers to ensembles of regression trees where a set of n_tree un-pruned
regression trees are generated based on bootstrap sampling from the original training data. For each
node, the optimal feature for node splitting is selected from a random set of m_feature from the total
N features. The selection of the feature for node splitting from a random set of features decreases
the correlation between different trees and thus the average prediction of multiple regression trees is
expected to have lower variance than individual regression trees. Larger m_feature can improve the
predictive capability of individual trees but can also increase the correlation between trees and void

build_single_tree 3

any gains from averaging multiple predictions. The bootstrap resampling of the data for training
each tree also increases the variation between the trees.

In a node with training predictor features (X) and output feature vectors (Y), node splitting is done
with the aim of selecting a feature from a random set of m_feature and threshold z to partition the
node into two child nodes, left node (with samples < z) and right node (with samples >=z). In
multivariate trees (MRF) node cost is measured as the sum of squares of the Mahalanobis distance
where as in univariate trees (RF) node cost is measured as the Euclidean distance.

After the Model of the forest is built using training Input features (trainX) and output feature matrix
(trainY), the Model is used to generate the prediction of output features (testY) for the testing
samples (testX).

Value

Prediction result of the Testing samples

References

[Random Forest] Breiman, Leo. "Random forests." Machine learning 45.1 (2001): 5-32.

[Multivariate Random Forest] Segal, Mark, and Yuanyuan Xiao. "Multivariate random forests."
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1.1 (2011): 80-87.

Examples

library(MultivariateRandomForest)
#Input and Output Feature Matrix of random data (created using runif)
trainX=matrix(runif(50*100),50,100)
trainY=matrix(runif(50*5),50,5)
n_tree=2
m_feature=5
min_leaf=5
testX=matrix(runif(10*100),10,100)
#Prediction size is 10 x 5, where 10 is the number
#of testing samples and 5 is the number of output features
Prediction=build_forest_predict(trainX, trainY, n_tree, m_feature, min_leaf, testX)

build_single_tree Model of a single tree of Random Forest or Multivariate Random For-
est

Description

Build a Univariate Regression Tree (for generation of Random Forest (RF)) or Multivariate Re-
gression Tree (for generation of Multivariate Random Forest (MRF)) using the training samples,
which is used for the prediction of testing samples.

Usage

build_single_tree(X, Y, m_feature, min_leaf, Inv_Cov_Y, Command)

4 build_single_tree

Arguments

X Input Feature matrix of M x N, M is the number of training samples and N is the
number of input features

Y Output Feature matrix of M x T, M is the number of training samples and T is
the number of ouput features

m_feature Number of randomly selected features considered for a split in each regression
tree node, which must be positive integer and less than N (number of input
features)

min_leaf Minimum number of samples in the leaf node, which must be positive integer
and less than or equal to M (number of training samples)

Inv_Cov_Y Inverse of Covariance matrix of Output Response matrix for MRF(Input [0 0;0
0] for RF)

Command 1 for univariate Regression Tree (corresponding to RF) and 2 for Multivariate
Regression Tree (corresponding to MRF)

Details

The regression tree structure is represented as a list of lists. For a non-leaf node, it contains the
splitting criteria (feature for split and threshold) and for a leaf node, it contains the output responses
for the samples contained in the leaf node.

Value

Model of a single regression tree (Univariate or Multivariate Regression Tree). An example of the
list of the non-leaf node:

Flag for determining whether the node is leaf node or branch node. 0
means branch node and 1 means leaf node.

1
Index of samples for the left node

int [1:34] 1 2 4 5 ...
Index of samples for the right node

int [1:16] 3 6 9 ...
Feature for split

int 34
Threshold values for split, average them

num [1:3] 0.655 0.526 0.785
List number for the left and right nodes

num [1:2] 2 3

An example of the list of the leaf node:

Output responses

num[1:4,1:5] 0.0724 0.1809 0.0699 ...

CrossValidation 5

CrossValidation Generate training and testing samples for cross validation

Description

Generates Cross Validation Input Matrices and Output Vectors for training and testing, where num-
ber of folds in cross validation is user defined.

Usage

CrossValidation(X, Y, F)

Arguments

X M x N Input matrix, M is the number of samples and N is the number of features

Y output responses as column vector

F Number of Folds

Value

List with the following components:

TrainingData List of matrices where each matrix contains a fold of Cross Validation Training
Data, where the number of matrices is equal to F

TestingData List of matrices where each matrix contains a fold of Cross Validation Testing
Data, where the number of matrices is equal to F

OutputTrain List of matrices where each matrix contains a fold of Cross Validation Training
Output Feature Data, where the number of matrices is equal to F

OutputTest List of matrices where each matrix contains a fold of Cross Validation Testing
Output Feature Data, where the number of matrices is equal to F

FoldedIndex Index of Different Folds. (e.g., for Sample Index 1:6 and 3 fold, FoldedIndex
are [1 2 3 4], [1 2 5 6], [3 4 5 6])

Imputation Imputation of a numerical vector

Description

Imputes the values of the vector that are NaN

Usage

Imputation(XX)

6 Node_cost

Arguments

XX a vector of size N x 1

Details

If a value is missing, it will be replaced by an imputed value that is an average of previous and next
value. If previous or next value is also missing, the closest value is used as the imputed value.

Value

Imputed vector of size N x 1

Node_cost Information Gain

Description

Compute the cost function of a tree node

Usage

Node_cost(y, Inv_Cov_Y, Command)

Arguments

y Output Features for the samples of the node

Inv_Cov_Y Inverse of Covariance matrix of Output Response matrix for MRF(Input [0 0;0
0] for RF)

Command 1 for univariate Regression Tree (corresponding to RF) and 2 for Multivariate
Regression Tree (corresponding to MRF)

Details

In multivariate trees (MRF) node cost is measured as the sum of squares of the Mahalanobis distance
to capture the correlations in the data whereas in univariate trees node cost is measured as the sum
of Euclidean distance square. Mahalanobis Distance captures the distance of the sample point from
the mean of the node along the principal component axes.

Value

cost or entropy of samples in a node of a tree

References

Segal, Mark, and Yuanyuan Xiao. "Multivariate random forests." Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 1.1 (2011): 80-87.

predicting 7

Examples

library(MultivariateRandomForest)
y=matrix(runif(10*2),10,2)
Inv_Cov_Y=solve(cov(y))
Command=2
#Command=2 for MRF and 1 for RF
#This function calculates information gain of a node
Cost=Node_cost(y,Inv_Cov_Y,Command)

predicting Prediction of testing sample in a node

Description

Provides the value of a testing sample in a node which refers to which child node it will go using
the splitting criteria of the tree node or prediction results if the node is a leaf.

Usage

predicting(Single_Model, i, X_test, Variable_number)

Arguments

Single_Model Model of a particular tree

i Number of split. Used as an index, which indicates where in the list the splitting
criteria of this split has been stored.

X_test Testing samples of size Q x N, Q is the number of testing samples and N is the
number of features (same order and size used as training)

Variable_number

Number of Output Features

Details

The function considers the output at a particular node. If the node is a leaf, the average of output
responses is returned as prediction result. For a non-leaf node, the direction of left or right node is
decided based on the node threshold and splitting feature value.

Value

Prediction result of a testing samples in a node

8 splitt2

single_tree_prediction

Prediction of Testing Samples for single tree

Description

Predicts the output responses of testing samples based on the input regression tree

Usage

single_tree_prediction(Single_Model, X_test, Variable_number)

Arguments

Single_Model Random Forest or Multivariate Random Forest Model of a particular tree

X_test Testing samples of size Q x N, Q is the number of testing samples and N is the
number of features (same order and size used as training)

Variable_number

Number of Output Features

Details

A regression tree model contains splitting criteria for all the splits in the tree and output responses
of training samples in the leaf nodes. A testing sample using these criteria will reach a leaf node
and the average of the Output response vectors in the leaf node is considered as the prediction of
the testing sample.

Value

Prediction result of the Testing samples for a particular tree

splitt2 Split of the Parent node

Description

Split of the training samples of the parent node into the child nodes based on the feature and thresh-
old that produces the minimum cost

Usage

splitt2(X, Y, m_feature, Index, Inv_Cov_Y, Command, ff)

splitt2 9

Arguments

X Input Training matrix of size M x N, M is the number of training samples and N
is the number of features

Y Output Training response of size M x T, M is the number of samples and T is
the number of output responses

m_feature Number of randomly selected features considered for a split in each regression
tree node.

Index Index of training samples

Inv_Cov_Y Inverse of Covariance matrix of Output Response matrix for MRF (Input [0 0; 0
0] for RF)

Command 1 for univariate Regression Tree (corresponding to RF) and 2 for Multivariate
Regression Tree (corresponding to MRF)

ff Vector of m_feature from all features of X. This varies with each split

Details

At each node of a regression a tree, a fixed number of features (m_feature) are selected randomly
to be considered for generating the split. Node cost for all selected features along with possible n-1
thresholds for n samples are considered to select the feature and threshold with minimum cost.

Value

List with the following components:

index_left Index of the samples that are in the left node after splitting

index_right Index of the samples that are in the right node after splitting

which_feature The number of the feature that produces the minimum splitting cost

threshold_feature

The threshold value for the node split. A feature value less than or equal to the
threshold will go to the left node and it will go to the right node otherwise.

Examples

library(MultivariateRandomForest)
X=matrix(runif(20*100),20,100)
Y=matrix(runif(20*3),20,3)
m_feature=5
Index=1:20
Inv_Cov_Y=solve(cov(Y))
ff2 = ncol(X) # number of features
ff =sort(sample(ff2, m_feature))
Command=2#MRF, as number of output feature is greater than 1
Split_criteria=splitt2(X,Y,m_feature,Index,Inv_Cov_Y,Command,ff)

10 split_node

split_node Splitting Criteria of all the nodes of the tree

Description

Stores the Splitting criteria of all the nodes of a tree in a list

Usage

split_node(X, Y, m_feature, Index, i, model, min_leaf, Inv_Cov_Y, Command)

Arguments

X Input Training matrix of size M x N, M is the number of training samples and N
is the number of features

Y Output Training response of size M x T, M is the number of samples and T is
the number of output responses

m_feature Number of randomly selected features considered for a split in each regression
tree node

Index Index of training samples

i Number of split. Used as an index, which indicates where in the list the splitting
criteria of this split will be stored.

model A list of lists with the spliting criteria of all the node splits. In each iteration, a
new list is included with the spliting criteria of the new split of a node.

min_leaf Minimum number of samples in the leaf node. If a node has less than or, equal
to min_leaf samples, then there will be no splitting in that node and the node is
a leaf node. Valid input is a positive integer and less than or equal to M (number
of training samples)

Inv_Cov_Y Inverse of Covariance matrix of Output Response matrix for MRF(Give Zero for
RF)

Command 1 for univariate Regression Tree (corresponding to RF) and 2 for Multivariate
Regression Tree (corresponding to MRF)

Details

This function calculates the splitting criteria of a node and stores the information in a list format.
If the node is a parent node, then indices of left and right nodes and feature number and threshold
value of the feature for the split are stored. If the node is a leaf, the output feature matrix of the
samples for the node are stored as a list.

Value

Model: A list of lists with the splitting criteria of all the split of the nodes. In each iteration, the
Model is updated with a new list that includes the splitting criteria of the new split of a node.

variable_importance_measure 11

variable_importance_measure

Calculates variable Importance of a Regression Tree Model

Description

Number of times a variable has been picked in the branch nodes of a (single) regression tree.

Usage

variable_importance_measure(Model_VIM,NumVariable)

Arguments

Model_VIM Regression Tree model in which the variable importance is measured

NumVariable Number of variables in the training or testing matrix

Details

In time of calculating node cost of a tree of a random forest, a user defined number of variables are
randomly picked. Among this, the best variable is chosen for the node using the node cost. While
an important variable for a model will always come out as the best. This function calculates the
number of times a variable has been picked in the regression tree. It has been done by checking
which variables are picked, how many times, in the branch nodes of the model.

Value

Vector of size (1 x NumVariable), showing the number of repetition of variables (serially) in the
branch nodes of the model.

Examples

library(MultivariateRandomForest)
trainX=matrix(runif(50*100),50,100)
trainY=matrix(runif(50*5),50,5)
n_tree=2
m_feature=5
min_leaf=5
testX=matrix(runif(10*100),10,100)

theta <- function(trainX){trainX}
results <- bootstrap::bootstrap(1:nrow(trainX),n_tree,theta)
b=results$thetastar

Variable_number=ncol(trainY)
if (Variable_number>1){

Command=2
}else if(Variable_number==1){

Command=1

12 variable_importance_measure

}
NumVariable=ncol(trainX)
NumRepeatation=matrix(rep(0,n_tree*NumVariable),nrow=n_tree)

for (i in 1:n_tree){
Single_Model=NULL
X=trainX[b[,i],]
Y=matrix(trainY[b[,i],],ncol=Variable_number)
Inv_Cov_Y = solve(cov(Y)) # calculate the V inverse
if (Command==1){
Inv_Cov_Y=matrix(rep(0,4),ncol=2)

}
Single_Model=build_single_tree(X, Y, m_feature, min_leaf,Inv_Cov_Y,Command)
NumRepeatation[i,]=variable_importance_measure(Single_Model,NumVariable)

}

Index

build_forest_predict, 2
build_single_tree, 3

CrossValidation, 5

Imputation, 5

Node_cost, 6

predicting, 7

single_tree_prediction, 8
split_node, 10
splitt2, 8

variable_importance_measure, 11

13

	build_forest_predict
	build_single_tree
	CrossValidation
	Imputation
	Node_cost
	predicting
	single_tree_prediction
	splitt2
	split_node
	variable_importance_measure
	Index

